元宇宙概念及其军事运用

访客 阅读:22 2024-06-21 19:05:57 评论:0
美化布局示例

欧易(OKX)最新版本

【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   全球官网 大陆官网

币安(Binance)最新版本

币安交易所app【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   官网地址

火币HTX最新版本

火币老牌交易所【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   官网地址

赵坦 1,2 吴琳 3 陶九阳 3李帅 1

Zhao Tan 1, 2 2 2 3 3 3 3 3 3 4 4 3 3 3 4 3 3 3 4 3 3 3 3 4 3 3 3 3 3 3 3 4 4 3 1 1

(1. 国防大学 研究生院,北京 100091; 2. 中国人民解放军31015部队,北京 100094; 3. 国防大学 联合作战学院,北京 100091 )

(1. Defense University Graduate School, Beijing 100091; 2. China People's Liberation Army 31015, Beijing 100094; 3. Defence University Joint Operations College, Beijing 100091)

DOI:10.16182/j.issn1004731x.joss.23-0722

摘 要元宇宙是2021年以来在商业界和学术界大火的用于描述虚实融合与互动的概念。为研究这一概念可能的军事应用,梳理了元宇宙的定义、特征及发展脉络,从军事元宇宙对建模仿真技术和传统实况-虚拟-构造仿真拓展的角度分析了构建军事元宇宙的必要性,从训练、作战、数据信息资源管理的现实需求角度研究了军事元宇宙可能带来的改进,分析了目前宣称正在开发的军事元宇宙雏形产品及其典型开发方式。

To study the possible military application of this concept, the definition, characteristics and developmental pulses of the meta-cosmos have been developed, analysing the need to construct a military metacosystem from the perspective of the military meta-cosm of imitation techniques and traditional factual-virtual-tectual-construction expansion, studying possible improvements to the military meta-cosm from the point of view of the real needs of training, combat, data information resource management, and analysing the embryonic products of the military meta-cosmology currently claimed to be under development, as well as their typical ways of development.

关键词元宇宙;军事元宇宙;扩展现实;建模仿真;合成环境;军事应用

keyword metacosystem; expanding reality; simulation; synthetic environment; military applications

0引言

0 /span > .........................................................

元宇宙(Metaverse)是一种描述虚实互动一体化的概念。2021年被称作“元宇宙元年”,国际顶尖的互联网企业,如苹果、微软、脸书、腾讯、网易等,均开始重视并纷纷布局元宇宙赛道。脸书态度尤为积极,将公司名称直接修改为Meta Platforms [ 1],显示了其进军元宇宙的强烈姿态。

Metaverse is a concept that describes the integration of virtual interactions. The year 2021 was called the “Year of the Woncos” and the top international Internet companies, such as apples, Microsoft, Facebook, tether, web-friendly etc., began to focus on, and spread, the game. The Facebook approach was particularly positive, with the company’s name being changed directly to Meta Platforms [1], demonstrating its strong stance towards the universe.

近两年来,对元宇宙概念、发展与应用的研究也逐渐成为学术研究中的一个热点。一些典型的综合类研究包括:文献[ 2]对元宇宙的战略、技术和哲学基础进行了详细描述,将其描绘为“下一代互联网”;清华大学新媒沈阳团队在2021-2022年先后发布了3篇关于元宇宙发展的研究报告,分别对元宇宙进行了概念梳理、行业分析、发展预测 [ 3],结合中国本土文化描述了元宇宙的属性、拓展及其应用场景、风险治理 [ 4],研究了元宇宙与其他学科的结合、元宇宙产业及中国式元宇宙等内容 [ 5];文献[ 6]从理论概念、关键技术、应用场景和政策治理四方面,对元宇宙研究与应用的现状和未来进行了综述。

Over the last two years, research on meta-cosm concepts, development and applications has also emerged as a hotspot in academic research. Some typical complex studies include: a detailed description of the strategic, technical and philosophical foundations of the meta-cosmos in the literature [2, depicting it as the “next-generation Internet”; three successive studies on the development of meta-cosmos published by the Shenyang team at Qinghua University in 2021-2022, in which conceptualization, industry analysis, development forecasting [3], and an overview of the status and future of meta-cosm research and applications from the theoretical concepts, key technologies, applications and policy governance four dimensions in conjunction with indigenous Chinese culture.

一些研究则专注于垂直分类的元宇宙研究,希望拓展新的研究内容和研究思路,如教育元宇宙 [ 7-8 ]、建筑元宇宙 [ 9]、图书档案元宇宙 [ 10-11 ]等。作为扩展现实(extended reality, XR)、数字孪生、人工智能、3D互联网、5G等多种技术综合涌现的新概念,元宇宙天然具有一定的技术引领性。随着元宇宙研究成为热点,其可能具有的军事意义和军事运用潜能也得到了关注。发展军事元宇宙概念,将战场空间拓展到元宇宙,可能成为未来军事竞争新的角力点 [ 12-13 ];军事元宇宙的全新思维方式可以丰富和促进认知域作战的理论 [ 14],其底层技术可以促进军事建模仿真领域的新发展 [ 15]。

Some studies have focused on vertically classified meta-cosmology studies, hoping to expand new research content and research thinking, such as new concepts such as teaching meta-cosmos [7-8], architectural meta-cosmos [9], library archipelagic cosmos [10-11] and so on. As expanding reality, digital twin, artificial intelligence, 3D Internet, 5G, and so on, new concepts such as the combination of technologies, such as teaching meta-cosmology [7-8], their potential military significance and potential for military applications are also taken into account. As meta-cosm studies become hot spots, developing the concept of military meta-cosm, expanding the battlefield space to the meta-cosm, could become a new corner point for military competition in the future []; and the theory of cognitive warfare [], whose bottom technologies can enrich military mimicspan>.

本文围绕元宇宙及其军事运用,主要开展了以下工作:①描述了元宇宙的已有定义和特征,按照文学影视、游戏娱乐和概念投入3条脉络整理了元宇宙的概念发展;②分析了军事元宇宙构建的必要性,研究了其对于建模仿真技术的拓展及其对传统LVC(live-virtual-constructive)仿真的拓展;③从需求角度出发,论述了军事元宇宙对训练、作战、数据信息资源管理现实需求的解决方法;④整理了目前已有的军事元宇宙雏形产品,重点分析了产品开发中多点同步扩展现实这一典型开发路径。

The paper focuses on the meta-cosm and its military applications: (a) describing the existing definitions and characteristics of the meta-cosmos, and investing three pulses in its conceptual development based on literary images, games and concepts; (b) analysing the need for the construction of the meta-cosm, and studying its expansion to imitate the true technology and its real expansion to the traditional LVC; (c) addressing the practical needs of the military meta-cosmos for training, combat and data information management from a demand perspective; and (d) collating the existing embryonic products of the military meta-cosm, focusing on the typical development path of multi-synchronous expansion of the reality in product development.

1元宇宙的定义与发展

1 definition and development of the metaspace

1.1 元宇宙的定义

1.1 Definition of the meta-cosmos

Metaverse一词于1992年在尼尔·史蒂芬森的科幻小说《Snow Crash》中出现,中译本《雪崩》中将其译作“超元域”。这部小说中描绘元宇宙是“计算机生成的宇宙,他们的计算机在他们的护目镜上绘制并注入他们的耳机……一个被称为元宇宙的虚构地方”,这里的元宇宙是对人类居住的未来数字模拟世界的科幻幻想,同时可以对现实世界产生影响,但是史蒂芬森并未给出元宇宙的标准定义。从字面看,“meta”是“本原,在……之上”的意思,因此元宇宙指向的是更高层的宇宙,是一种“宇宙的宇宙”,也就是很多“宇宙”组成的更大的“宇宙” [ 16]。由于元宇宙是还没有实现的未来概念,如同21世纪初的“赛博空间”和近些年的“新零售”概念一样,其含义也会随着理论发展和认知理解而不断变化;目前来看,业界、学界对元宇宙概念的定义尚未统一,表1从不同侧面例举了几种典型的元宇宙定义。

The term Metaverse appeared in 1992 in the Snow Crash of Neil Stephenson's science fiction novel, which translated it into a “super-mode” meaning “the universe created by computers, whose computers drew and injected their headphones on their eyeglasses, a fictional place known as the meta-cosmos, which is an illusion of the future digital simulation of the world in which human beings live, but which at the same time does not give a standard definition of the meta-cosm. The meaning of the meta-cosm, which is literally the meaning of “the present, above...”, is that the meta-cosm is directed to a higher universe, a “cosmos of the universe”, that is to say, the larger universe of many “cosmos” [16]. Since the meta-cosmos is the concept of the future that has not yet been realized, as the concept of “Sebospace” at the beginning of the 21st century and the concept of “new retailing” in recent years, the concept of the universe has not yet been defined in a coherent version of the universe.

表1 元宇宙的典型定义Table 1 Typical definitions of the metaverse

table 1 图1“元宇宙”的8个特征要素Fig. 1Eight characteristic elements of the metaverse

, figure 1, "span" , the eight characteristics of the metaspace ,,,,, , , >Fig. 1, , , , , /spanspans,

综合以上论述,本文认为,元宇宙是一个聚焦于实现多虚拟世界间互操作的去中心化网络,用户通过拓展现实设备进入虚拟世界并接受虚拟世界的反馈,实现虚实相融;通过数字孪生技术建立现实镜像与逼真世界,通过区块链技术建立可信的经济、身份和社交体系,可以为用户提供持续的真实感、沉浸感和存在感,并允许用户对虚拟世界中的内容进行专有的创作、编辑与转移。

Taken together, the paper argues that the meta-cosmos is a decentralized network focused on achieving multi-virtual inter-operability between the worlds, where users are condensed by expanding their physical access to the virtual world and receiving feedback from the virtual world; creating a real-world mirror and real-world through digital twin technology, building a credible economic, identity and social system through block-link technology, which can provide users with a continuous sense of authenticity, immersion and presence, and allowing users to create, edit and transfer unique content from the virtual world.

1.2 元宇宙概念的发展

1.2 Development of the concept of the meta-cosmos

对元宇宙概念的理解和发展有比较明晰的3条脉络,即文学影视、游戏娱乐和概念投入。

The understanding and development of the meta-cosm concept has three distinct threads, namely literary film, play and entertainment, and conceptual input.

(1) 文学影视脉络主要是文学艺术创作者的科学幻想。史蒂芬森的小说《雪崩》提出了“元宇宙”的概念,而类似创意则可以追溯到更早。如1950年雷·布拉德伯里的小说《天鹅绒》讲述了父母将子女送入虚拟现实托儿所,子女沉迷不愿意离开的故事;1953年菲利普·迪克的小说《泡沫的烦恼》讲述了人类在外太空未找到新生命,为了与新世界的生命体建立联系,构造了“Worldcraft”,在其中可以建立和拥有自己的世界;1984—1988年威廉·吉普森的“矩阵三部曲”描述了人类生活在AI统治的赛博空间中,类似的概念直接影响了热门科幻电影系列《黑客帝国》的创作;近年来,也涌现出了如《阿凡达》《头号玩家》《失控玩家》等电影作品。创作者进行的此类创作,得益于虚拟现实、人工智能等技术发展带来的科幻灵感,是对元宇宙概念的浪漫描述。

(1) The literary and visual context is essentially the scientific fantasy of the creators of literary and artistic art. The Avalanche by Stephenson proposes the concept of a meta-cosm, and similar ideas can be traced back much earlier. For example, the Re Bradbury novel of 1950, the Velvet, tells the story of parents sending their children to virtual day-care centres, and their children are obsessive about their unwillingness to leave; the Philip Dick's novel of 1953, The Troubles of the Foam, tells of the lack of new human life in outer space, and the creation of the Worldcraft, in order to connect with the life of the new world, in which creators can build and own their own world, benefit from such creations as virtual reality, artificial intelligence, and the scientific inspiration of technological developments such as virtual reality, artificial intelligence, which directly influences the creation of the Black Empire in the popular science series of films; and, in recent years, films such as Avanda's Top Player, Uncontrollator, which are romantic in characterizing the concept of the universe.

(2) 游戏娱乐脉络基本对应大型多人在线(massive multiplayer online, MMO)游戏的发展脉络。如图2所示,在20世纪70年代就有玩家创作了《多用户迷宫游戏》(multiple user domain, MUD),是基于计算机文本构建的虚拟世界;1986年在线游戏《栖息地》(Habitat)发布,游戏场景是2D图形化的多人参与的在线虚拟世界,玩家在游戏中有较强自主权,还首次使用了“化身”(avatar)一词表示玩家在游戏中的虚拟替身;2003年推出的《第二人生》(Second Life)则被认为首次描绘了可行的虚拟世界的愿景,玩家可以使用化身、进行创作和互动;随后2006年的《机器砖块》(Roblox)和2009年的《我的世界》(Minecraft)则瞄准青少年群体,使游戏更易上手,经过十几年发展两个游戏月活用户在2021年已分别超过2.2亿和1.2亿;传统游戏《堡垒之夜》(Fortnite)也进行了类似改造,在2018年推出创意模式,允许玩家创建自己的游戏,自由地创作和社交。此类游戏的典型特征是:游戏不预设目标,允许玩家自由进行探索、创造、交流;玩家创造物可以进行确权、交易,所得收益甚至可以兑换现实货币,如《第二人生》中的林登币;与现实世界连接,并可反作用于现实,如线上虚拟组织直接指挥线下活动

(ii) The playplayer's network basically corresponds to the development of the 2D graphicalized virtual world, where players have greater autonomy in the game and, for the first time, use the word “vatar” as a virtual replacement for players in the game, as shown in figure 2; the "Second Life ", which was launched in 2003, is considered the first time to paint a viable virtual world, where players can use mosaics, create and interact; the " Robotox ", which was launched in 2006, is an online virtual world in which 2D people participate, where players have greater autonomy in the game and, for the first time, use the word "vatar" as a virtual replacement for players in the game; the "Second Life", launched in 2003, is seen as the first time as a vision of a virtual world based on computer text; the "House" is published; the "Mablox" and the "Mine Trader's" in 2009, which allows the creation of a new game and the "Mob" (the "Mine Trader's" ) are used to target youth groups;

图2“元宇宙”类型游戏发展脉络图Fig. 2Development map of metaverse-type games

, figure 2 , , , , , , , , , /span>, , , , , >

(3) 概念投入脉络则是伴随2021年脸书改名Meta前后的“元宇宙”热潮。比如在美国证券交易委员会的文件中,2020年及以前仅提及5次元宇宙,而在2021年则超过260次 [ 2];微软此前已开发的包括Minecraft游戏和增强现实(AR)设备hololens2在内的协作平台Mesh,在热潮中更名为Mesh for Teams,宣称要打造元宇宙平台;韩国首尔市在Meta更名后跟进宣布要建设“元宇宙首尔”并推出五年建设计划 [ 24]等。然而,各家的元宇宙建设离建成显然相去甚远,一是建设本身未完成,二是远不能连接为“宇宙的宇宙”。因此更多值得关注的是“原型元宇宙”(Proto-Metaverse),即元宇宙的早期形式,此处选取了部分有代表性的原型元宇宙进行描述,如表2所示。

(3) The conceptual input was accompanied by a wave of metaspaces before and after the 2021 Facebook renaming of Meta. For example, in a paper by the United States Securities and Exchange Commission, only five metaspaces were mentioned in 2020 and before, and more than 260 [2] in 2021; Microsoft's previously developed collaboration platform, including Minecraft games and the enhancement of reality (AR) hololens2, was called Mesh for Teams in the heat wave; Seoul, Korea, after the renaming of Meta, announced the construction of the meta cosmos Seoul and the launch of the five-year construction plan [24]. However, the construction of the metacosystem is clearly far from being built, and the construction itself is far from being completed, and it is impossible to connect to the cosmos.

表2 部分原型元宇宙Table 2 Part of proto-metaverse

Table 2 Part Prototype Cosmos图3军事元宇宙对建模仿真技术的拓展Fig. 3Expansion of M&S tech in the military metaverse

, figure 3 , the expansion of the military meta-cosm to imitate real technologies > > /spantyle="font-size: 16px; span Fig.3

(1) UI的沉浸式和交互式改进。UI是联结虚拟世界与真实世界中用户的接口,用户可以通过多种途径如传统方式或更新的XR方式如VR、AR等“进入”虚拟世界。XR技术通过传感器带动用户全身感官的反应,从而带来了更强的沉浸感和交互式体验,使得用户获得更直观也更深入的认识。典型应用如2018年起美国陆军花费220亿美元从微软分批购入12万套HoloLens设备用于构建集成视觉增强系统 (integrated visual augmentation system, IVAS) [ 32];UI的沉浸式改进,除视觉之外也可以营造其他体感,如采用触觉接口设备,通过微机电系统的联机网络发出超声波构造受力感 [ 2]。

(i) UI immersion and interactive improvements. UI is an interface between the virtual world and users in the real world. Users can “enter” the virtual world by means of traditional or updated XRs, such as VRs and ARs. XR technologies use sensors to induce the user's whole-body sensory response, which leads to a stronger immersion and interactive experience, allowing users to gain a more intuitive and in-depth understanding. Typical applications such as the US Army's $22 billion spent from Microsoft since 2018 to buy up 120,000 HoloLens devices to construct integrated visual enhancement systems (incorporated visualization system, IVAS) [32]; UI's immersion improvements can also create other body perceptions in addition to vision, such as the use of touch interface devices, and the creation of hypersonic receptivity through an online network of micromechanical power systems [2].

(2) 基于数字孪生的赛博-物理交互。赛博物理系统(cyber physical systems, CPS) [ 33]通过数字映射实现物理系统在赛博空间中的集成并反馈驱动物理系统,利用物联网技术集成各类CPS可以推动元宇宙的实现 [ 34],这样构建的元宇宙可以用数字孪生 [ 35]多物理、多尺度、多学科的属性描述。借助数字孪生实时同步、忠实映射、高保真度的特性,可以依据原真实系统的实时数据对数字孪生进行更新和校准;因此可以在实际构建或应用前进行高可信度试验,实现军备采购评估测试 [ 36]、军工复杂产品设计 [ 37]等方面向快速化、低成本化方向的转变。依照类似思路,可以引入数字孪生战场 [ 38]的概念,利用与真实战场连接的数字孪生战场,在训练中可以增强训练结果的可信度;在作战建模仿真中连接真实系统如情报、指控(command and control, C2)等,也可以改进计划的效果 [ 31]。

(2) Digitally based Sabo-physical interactions. Cyberphysical systems (cyber physical systems, CPS) [33) achieves the integration and feedback-driven physical systems of physical systems in Cyberspace by digital mapping. The integration of various types of CPS using physical networking techniques can contribute to the realization of the metacosystem [34], so that the built metacosystems can be described as multiphysical, multiscale, multidisciplinary attributes [35].

(3) 更通用的标准带来更广泛的连接。通过网络将多个仿真系统互联,使多个用户连接到共享的虚拟空间中,这一思想由来已久:从1983年美军的模拟器组网(SIMNET)计划,到20世纪90年代的聚合级仿真协议(aggregate level simulation protocol, ALSP)和高层体系结构(high level architecture, HLA)等,仿真系统连接实现了从异地分布的同构模拟器互联,到高层次聚合级仿真,再到异构系统大范围互联的转变 [ 39],核心在于互操作性的不断提高。RTI规定了HLA中成员间的信息交互规范并提供支持成员间互操作的服务函数,从而实现不同仿真模块的快速组合并提供服务。在军事元宇宙中实现广泛的互操作性需要更通用的标准,美军已经在进行这方面的探索,如使用标准协作工具、通用模型库、可重用环境发生器等处理JLVC( joint live, virtual, constructive)联邦互操作问题 [ 40]。

The idea of connecting multiple analogue systems to shared virtual spaces through networks has been a long-standing one: from the 1983 US military simulator network (SIMNET) scheme, to the broad interconnectivity of the heterogeneous systems up to the 1990s (aggregate level simulation protocol, ALSP) and high-level architecture structures (high level example, HLA), to achieve rapid integration and service delivery of different imitation modules in the military meta-cosmos, to achieve a much more common standard for interoperable systems [39], the core of which is increasing interoperableity.

(4) 用非同质化代币(non-fungible token, NFT)促进军事元宇宙内容生态发展。随着马赛克战 [ 41]、决策中心战 [ 42-43 ]概念的兴起,集中式、大批量、长周期的装备采购流程正逐渐被灵活的模块化采购取代,小型的定制化服务将成为提供军事能力的主流。这要求建立模块化的建模仿真集合,提供相应的接口规范,以实现模块化系统中更高性能、更具适应性的模型替换落后版本。元宇宙的NFT [ 44]使用了去中心化技术,由于非同质化特征使每个NFT都是唯一的且不能更改,因此具有了一定的价值属性和收藏属性。如果将模块化服务内容按照NFT管理,则可以激发建模仿真开发人员热情,转向进行模块化服务内容的开发,从而促成军事服务资产的创新与增加。

(4) The ecological development of the military meta-cosm content is facilitated by the use of non-consistency in currencies (non-fungible token, NFT). With the emergence of the concept of 41, decision-making centres [42-43], centralized, bulky, long-cycle equipment procurement processes are gradually being replaced by flexible modular procurement, and small customization services will be mainstreamed into the provision of military capabilities. This will require the establishment of modular simulations and the provision of corresponding interface norms to achieve higher performance and more adaptive models in modularization systems to replace backward versions. NFTs of the meta-cosystems [ 44] uses decentralized technologies that make each NFT unique and unalterable, and therefore have a certain value and collection attributes. If modularization services are managed in accordance with NFT, they can stimulate the development of modular development personnel and turn towards the development of modular service content, leading to the innovation and enhancement of military services.

(5) 军事元宇宙建设改进建模仿真的效果。文献[ 31]认为元宇宙的构建需要建立在高效计算、低延迟联网和分布式记录(区块链)的基础之上。对于建模仿真,高效计算可以加快分析决策速度,允许仿真更复杂的模型;低延迟组网使得多个用户可以面向同一模型,从而形成共同理解,协作改进模型可信度;通过分布式记录可以实现仿真全程全角度记录,从可信、可追溯的细节对建模仿真做出改进。

The literature [31] argues that the construction of the metacosystem needs to be based on high-efficiency calculations, low-delayed networking, and distributed records (block chains). For simulations, efficient calculations can speed up the analysis of decision-making and allow for emulation of more complex models; a low-delaying network allows multiple users to look at the same model, thus developing a common understanding and collaborating to improve its credibility; and a distribution of records can provide a full-scale copy of the simulation and improve simulation from credible, retraceable details.

2.3 军事元宇宙视角的LVC

2.3 LVC from the military meta-cosmos perspective

军事建模仿真按照虚实结合的不同可以划分为实况(Live)仿真、虚拟(Virtual)仿真、构造(Constructive)仿真,可简单理解为分别对应“真实人操作真实系统”“真实人操作虚拟系统”“虚拟人操作虚拟系统” [ 45]。在模拟中3种类型各有侧重,如实况仿真多用于技战术训练,虚拟仿真用于支持技战术流程改进,构造仿真适于定义作战概念或获取系统顶层需求 [ 46]。

Military simulations can be divided into Live, Virtual, Constructive and Constructive simulations, which can be easily understood as corresponding to the Real Human Operation Virtual System, “Real Human Operation Virtual System,” respectively [45]. In the simulations, emphasis is placed on three different types, such as actual simulations, which are used more for technical and tactical training, virtual simulations, which are used to support technological and tactical process improvement, and simulations that are appropriate to define the concept of combat or to capture the system's top needs [46].

如图4所示,使用军事元宇宙概念可以对3种分类进行统合并拓展。从军事元宇宙的视角看,不同虚实程度的仿真对应的其实是不同的世界或世界间的交互:实况仿真对应完全在现实世界中的模拟;构造仿真对应完全在虚拟世界中的模拟,真实世界的人可以对虚拟世界进行影响,但仅可以作为新的环境参数出现,虚拟世界系统是自治的,其中的Agents会根据预设规律进行交互和演变;虚拟仿真对应从真实世界向虚拟世界进行的控制,利用各类接口如拓展现实、客户端、网页等对虚拟世界中的实体进行操作,可以采用具身交互或上帝视角;LVC划分并不包括虚拟人对真实系统的操作,而在军事元宇宙中则可以通过构建虚拟世界中AI在现实世界中的“代理”,实现对现实世界的反作用,如将经过虚拟场景训练获得的作战算法应用于现实,并由虚拟AI控制其在现实中的作战。

As figure 4 shows, using the concept of the military meta-cosm makes it possible to expand the three classifications together. From the perspective of the military meta-cosm, the simulations of different levels of fiction correspond to interactions between different worlds or worlds: they correspond to simulations that are entirely in the real world; they correspond to simulations that are entirely in the virtual world, where people in the real world can influence the virtual world, but only as a new environmental parameter, where the virtual world system is autonomous, where Agents interacts and evolves according to predefined patterns; they interact with the virtual world from the real world to the virtual world, using various interfaces such as the expansion of reality, client ends, web pages, etc., and can operate with an interactive or God's perspective; the LVC division does not include the operation of the virtual person to the real system, but in the military meta-cosm, it can achieve counter-effects in the real world, such as applying the algorithms acquired through virtual scenario training to reality, and allowing the virtual AI to control its battles in reality.

图4基于军事元宇宙的LVC划分与拓展Fig. 4Division and expansion of LVC based on military Metaversem

, figure 4 > LVC division and expansion based on the military metre universe

将实况仿真、虚拟仿真和构造仿真技术全部或部分综合使用的技术被称作LVC方法 [ 47],这一方法采用虚实结合,既能发挥虚拟系统对功能进行模拟和迭代开发的能力,也能对接真实设备以保证全面可靠,具有实战逼真、保证安全、定制场景、经济节约等优势 [ 48],但也在数据互识别、时空一致性、逻辑合理性、可扩展性、可组合性等方面提出了挑战 [ 49]。美军正着力从L、LVC、VC三个方面开展LVC训练项目建设,以实现不同层次能力的均衡发展 [ 50]。LVC方法是贯通不同层次建模仿真较为有效却能够实现较高保真度的方法,但结合图5可以看出,该方法仍有两方面的不足,一是随着抽象程度提高,该方法对更高层次模拟能力的缺失;二是LVC方法通过3种技术的综合应用仅实现了部分层次间的关联,仍缺乏全局一致的综合性和可解释性。文献[ 51]认为元宇宙最大的优势即在于其综合性,实现了虚拟时空构建和访问的统一性和跨时空群体性体验的协作性。利用军事元宇宙扩展LVC方法,则可以在覆盖LVC高保真建模仿真能力的同时,实现在更抽象层面的一致性和可信性。

The technology used to imitate reality, virtual imitation and tectonic imitation technology is also known as the LVC method [47], which uses a false combination that combines both the ability of virtual systems to simulate and develop functions, and the capacity of real equipment to ensure full reliability, balanced development of capabilities at different levels [4848], but also presents challenges in terms of data identification, time and space consistency, logical reasonableness, scalability, collusibility [49]. The U.S. Army is working to build a LVC training project from the three sides of virtual systems to ensure full reliability, ensuring security, customization, economic economy, etc. [48/span>], but also challenges in terms of data cross-fertilization, /span>.

图5模拟分层与LVC方法Fig. 5Simulation layers and LVC method

span>, figure 5 simulations and LVC methods /span 图6军事元宇宙虚拟世界划分Fig. 6Division of the virtual world by military metaverse

[span] > the virtual universe divided by the military universe span > Fig. 6 > /span

3军事元宇宙应用需求

3 military meta-cosm application needs

文献[ 53]提出元宇宙用于军事的三大优势是:连接不同地点的更多的人、高保真度仿真带来对现实的新认识以及身临其境的沉浸感。北约近期提出了军事元宇宙作战概念 [ 27],认为元宇宙技术的进步,在军事上可以加强集成、协调和共享,相关数据将被视作战略资产并具有持续性,从而在各类军事活动中发挥潜力,其益处包括:增强军事准备能力、改进对多域集成的支持、获得更经济高效的协作能力、降低地理距离带来的影响、减低对周边环境的影响等。通过各类文献报告梳理认为,军事元宇宙“连接性+高保真+沉浸感”的特征可用于满足改进训练、改进作战、改进信息能力等多种需求。

The literature [53] suggests three major advantages for the use of meta-cosm for military purposes: more people connecting to different locations, new understanding of reality as a result of high-security simulations, and a sense of impregnation in their surroundings. NATO recently introduced the concept of military meta-cosm operations [27], arguing that advances in meta-cosm technology could be strengthened, coordinated and shared militarily, and that data would be considered a strategic asset and of a continuing nature, with the benefits of increasing military readiness, improved support for multi-area integration, more cost-effective collaboration, reduced geographical distance, reduced impact on the surrounding environment, etc. The characteristics of the meta-cosm could be used to meet a variety of needs for improved training, improved combat, improved information capabilities, etc.

3.1 改进训练

3.1 Improved training

军事训练通过对受训对象进行知识教育、技能教练等活动使其获得相应军事能力 [ 54],加快训练周期 [ 55]、实现人机协同训练、扩展训练空间,都对军事元宇宙应用于训练提出了需求。

Military training has created a demand for the use of the military meta-cosm for training through activities such as intellectual education, skill coaches, etc. [54], accelerated training cycles [55], coordinated human training and expanded training space.

从训练方法角度看,课堂式教学正逐步被交互式训练所逐渐取代,这一转变得益于使用沉浸式UI交互带来的体验学习方式,文献[ 56]论述了体验学习方式相较于传统训练能快速且显著地增强士兵能力。分析军事元宇宙带给提升训练效果的影响,认为主要来自4个方面:

From the point of view of training methods, classroom teaching is gradually being replaced by interactive training centres, a shift that has benefited from experience learning using the interactive immersion UI, which is discussed in the literature [56] in relation to traditional training that enhances the capabilities of soldiers quickly and significantly. Analysis of the impact of the military meta-cosm on the effectiveness of training is considered to be based on four main aspects:

(1) 真实复杂广阔的战场环境。通过元宇宙技术,可以模拟出各种作战环境和情况,包括不同地形、气候、武器和装备等 [ 57];实现由作战战术到后勤管理的全流程全环境模拟 [ 58],实现各个仿真层(如地形、卫星网、物联网、人)的全连接,同步不同区域的训练 [ 59]。这样的模拟可以为军队提供更多样的训练和更深入的思考。

(1) A truly complex and vast battlefield environment. The meta-cosm technology allows the simulation of various operational environments and circumstances, including different terrains, climates, weapons and equipment [57]; the full-process environmental simulation from operational tactics to logistics management [58], the full connectivity of the real layers (e.g. topography, satellite networks, object networking, people) and the synchronization of training in different regions [59]. Such simulations can provide military forces with additional training and deeper thinking.

(2) 更低的成本和伤亡风险。通过虚拟仿真技术,军队可以以更低的成本和风险进行联合作战和协同行动训练,从而强化备战能力。元宇宙作战环境的持续保留与重复使用,可以以极低的成本改造以获得所需场景,进行多样化训练。在元宇宙训练中可以创建极端的危险的情景,允许受训人员操作危险设备,而无须考虑其带来的人身危险 [ 60]。

(2) Lower costs and the risk of casualties. Through virtual simulation techniques, military forces can enhance their operational readiness by training in joint combat and coordinated operations at lower costs and risks. Sustained retention and reuse in the meta-cosmos operational environment can be adapted at very low cost to obtain the required scenario and diversified training. Extremely dangerous scenarios can be created in meta-cosm training, allowing trainees to operate dangerous equipment without taking into account the personal risks it poses [60].

(3) 更多更个性化的训练。由于元宇宙训练的交互式特点,可以为每个受训人员提供量身定制的反馈 [ 31],通过个性化设计和随时可用的额外培训,可以确保对每个受训人员训练到位。通过区块链使能的精准数据记录,可以持续跟踪人员不足和改进情况,并帮助受训人员快速进入其擅长的领域 [ 61]。

(3) More personalized training. Due to the interactive nature of meta-cosm training, tailored feedback [31] can be provided to each trainee, ensuring that each trainee is trained through personal design and readily available additional training. The accurate data recording of energy through block chains allows continuous tracking of understaffing and improvement and helps the trainee to quickly enter his or her area of expertise [61].

(4) 连续的沉浸感。元宇宙不会重置或暂停,军事元宇宙将因此可以提供军事人员全天候的训练和实验效果 [ 55]。通过扩展现实可以模拟出持续的高压环境,挑战受训人员的心理和生理极限,用作战、对抗的方式模拟训练,从而塑造更能适应真实战场的军队。

(4) Continuous immersion. The meta-cosm will not be reset or suspended, and the military cosmos will thus be able to provide round-the-clock training and experimental effects for military personnel [55]. By expanding reality, it will be possible to simulate a continuous high-pressure environment, challenge the mental and physical limits of the trainees, and simulate training in a combat and confrontation manner, thus shaping an army more suited to the real battlefield.

随着人工智能技术的进步,受训对象也可以从人员扩大到智能设备范畴。数字孪生不仅可以应用于现实人员装备到虚拟化身的投射,虚拟化身本身在不同世界中也可以有相应孪生,乃至于以物理机器人的形式出现在现实中 [ 55]。由于军事元宇宙中不同世界间的互操作性,同一智能设备的算法在一个世界中训练时积累的经验知识是可以应用于另一个世界的,在各类极端、新奇、人员协作等大量不同场景中的训练将实现智能设备算法更全面的知识与技能掌握,使得应用该算法的现实设备将具有更高水平的智能。

As artificial intelligence advances, the target audience can also be expanded from a person to an intelligent device. The digital twin can be applied not only to the equipment of the real person to the projection of the virtual incarnation, but also to the creation of the virtual in itself in a different world, or even to the physical robotic form [55]. Because of the interoperability of different worlds in the military meta-cosm, the empirical knowledge gained by the same smart device when trained in a world can be applied to another world, and training in a wide variety of extremes, novels, people's collaboration, etc., will lead to more comprehensive knowledge and skill acquisition of smart equipment algorithms, making the practical equipment applying the algorithm more intelligent.

此外,在一些特殊需求中,使用军事元宇宙技术进行训练也确有必要。文献[ 62]指出韩国本国国土狭小、快速城市化导致训练场地不足,需要借助元宇宙建立科学训练体系以使得分散的士兵接受系统科学的训练。在极端环境如高原、深海、太空 [ 63]或不易开设演训场的环境如城市 [ 64],可以借助元宇宙概念拓展训练空间。对于一些难以仿真或仿真成本高昂的场景,军事元宇宙技术可能能够提供更真实完备的仿真以实现更好的训练。如对于电子战的仿真,电磁的破坏和复杂电磁环境的仿真始终难以逼真。文献[ 58]认为通过元宇宙技术可以构建电磁环境由简单到复杂的过渡,实现对电子战的仿真,在此基础上允许用户按照自身能力水平调整电磁环境,以实现按需训练。

The literature [62] points out that the small size of Korea’s own territory and rapid urbanization have led to a shortage of training sites and that it is necessary to build scientific training systems in the meta-cosm to enable dispersed soldiers to be trained in system science. In extreme environments such as high plateaus, deep sea, outer space [63] or in environments where it is not easy to open theatres, such as cities [64], it is possible to expand training spaces by using meta-cosm concepts. For sites that are difficult to imitate or that are costly, military meta-cosm technology may provide a more complete simulation to achieve better training.

3.2 改进作战

3.2 Operational improvements

在作战指挥控制中引入军事元宇宙具有一定的客观需求性。从20世纪末起,网络中心战 [ 65]概念一直扮演着指控中的关键角色,其核心在于通过庞大的指挥所、集中的人员和技术来引接各类情报信息或数字信号以生成通用作战图,用于协助指挥员做出及时有效的决策。然而作战日益复杂、数据量过载,继续维持这一通用作战图变得愈发艰难,指挥所庞大的体量和频繁的电磁交互极易被侦察发现,并成为对手高精度武器的打击目标。

Since the end of the twentieth century, the concept of cybercentre warfare [65] has played a key role in the charges, at the core of which is to draw intelligence information or digital signals through large command posts, centralized personnel and technology to generate generic operational maps to assist commanders in making timely and effective decisions. However, increasingly complex operations and overloading data, it has become increasingly difficult to maintain this generic war map, and commanding large volumes and frequent electromagnetic interactions is easy to detect and to target high-precision weapons.

文献[ 66]认为,构建合理的军事元宇宙模型可以解决这一问题。借助军事元宇宙,通过必要的人员和设备联网,可以实现指挥所人员设备物理世界分离而在虚拟世界中聚集的效果;通过军事元宇宙实现虚拟世界的中心化指控而无需担心指挥所生存问题,同时通过军事元宇宙的信息分发可以支持多点分布式的同步作战,即实现了指挥控制的物理去中心化和效果中心化。文献[ 15]也提出,军事元宇宙可以使分布在各地的指挥官“面对面”探讨决策部署,快速形成集体决策,并进行有效作战。

The literature [66] argues that a rational model of the military meta-cosm can solve this problem. Using the military meta-cosmos, the physical physical world separation of command post personnel can be achieved through the necessary network of personnel and equipment; centralizing the virtual world through the military meta-cosmos without fear of its survival, while supporting multi-point-distributed simultaneous combat through the dissemination of information in the military meta-cosmos, i.e., centralizing the physical de-centralization and effectiveness of command control. The literature [15] also suggests that the military meta-cosms can enable commanders who are scattered everywhere to “face face-to-face” explore the deployment of decisions, rapidly develop collective decision-making and effectively combat.

军事元宇宙还为作战指挥控制提供了仿真推演验证的能力。文献[ 15]以导弹作战为例论述了军事元宇宙对推演装备运用和战法创新的支撑能力,认为军事元宇宙可以汇聚不同地域专家共同参与同一仿真推演过程,过程中随时提出问题并实时完善推演要素,从而可以达到更高的保真度和完备性,用于预测作战系统或作战方案在实战环境中的各种问题,寻求应对措施。

The military meta-cosm also provides the capability to simulate operational command and control. The literature [15] addresses missile warfare as an example of how the military meta-cosm supports the use of surrogate equipment and the innovation of the laws of war. It is argued that the military meta-cosm can bring together experts from different geographical regions to participate in the same simulation process, raising questions at any time and refining in real time the evolutionary elements so as to achieve a higher degree of certainty and completeness that can be used to predict the problems of a combat system or a combat programme in a real-time environment and to seek responses.

军事元宇宙另一个被用于改进作战的方面是其能够改进和扩展信息收集传递的方式。元宇宙的一大优势在于其全连接性,建成军事元宇宙即相当于建成了一个全连接的信息网络。大量的数据和信息被融合到军事元宇宙中,使用者可以更好地了解和协调各类信息,这给元宇宙在信息传递和情报收集方面提供了更多的可能性 [ 57]。文献[ 13]提出了一种战场元宇宙概念,认为可以作为战时指挥通信网络的备份手段,在指挥通信网络遭遇毁瘫后,通过元宇宙的通信链路维持基本通信。相类似的,文献[ 58]也提出在通信受限情况下,通过共享的虚拟环境可以使部队上下级、友邻部队间的交流保持畅通;此外,他还认为通过军事元宇宙可以实现部队之间全新的沟通和协作方式,在军事行动过程中收集和分析信息将更加高效,使得指挥官和士兵更好地了解战场情况。值得注意的是,军事元宇宙的全连接性本质上仍然是通信网络,其仍具有易受打击、带宽限制、网络延迟、数据失真等多种问题,而为保持军事元宇宙的异地实时一致,对基础通信设施要求将会更高,这将成为军事元宇宙构建和技术发展的一个挑战。

Another aspect of the military meta-cosm is its ability to improve and expand the way in which information is collected and transmitted. A major advantage of the meta-cosmos is its full connectivity, with the creation of a military meta-cosm amounting to the creation of an all-connected information network. A great deal of data and information is integrated into the military meta-cosmos, where users can better understand and coordinate the various types of information, which offers greater possibilities for communication and intelligence gathering [57]. The literature [13] presents a battlefield meta-cosm concept that can be used as a backup for commanding communication networks in times of war. The collection and analysis of information in the course of military operations will be more efficient, leading commanders and soldiers to a better understanding of the battlefield.

3.3 改进信息能力

3.3 Improved information capacity

军事元宇宙对于军事信息能力的改进主要来自其对数据信息资源的统合,并能建立有效共享交流机制。无论美军 [ 31]或是我军 [ 67],由于数据信息资源建设问题本身的复杂性和起初认识的局限性,都经历了由各军种各单位分散建设到寻求统一标准框架以实现逐步集成的过程,目前仍然都存在“烟囱林立”“信息孤岛”的情况,这导致数据信息资产建设缺乏统一标准、数据信息资源交流不畅、数据信息资源质量较差等问题。而军事元宇宙概念可能为这些问题的改进提供较全面的解决方案。

The military meta-coastal improvement in military information capabilities stems mainly from its integration of data information resources and the establishment of effective mechanisms for sharing communication. Whether the U.S. military [31] or my military [67], due to the complexity of the data information resource development issues themselves and the limitations of the initial understanding, has experienced a process of fragmentation from the various units of the military to the search for a standardized framework for progressive integration, and there is still a “smoke of “smoke” information silos, which has led to a lack of uniform standards for data information asset building, poor exchange of data information resources, and poor quality of data information resources.

不同数据资源池在建立之初使用的技术标准差异,将导致其互相间无法连接。而军事元宇宙的全连接性和互操作性要求其内在具有数据标准的统一性。各种类型的数据资源想要接入元宇宙,必须建立在统一数据标准之上,或开发能够自动按元宇宙数据标准转化的接口。这一工作并非易事,但在设计之初即优先考虑互操作性,则众多数据信息资源与众多军事虚拟环境的连接将可能揭示出一体化军事虚拟世界的真实价值 [ 28]。基于统一的数据标准构建仿真内容也会更加经济快捷,基础的仿真内容可以被重用,避免重复建设的同时,增强模型的一致性;在各个细化场景中,只需要对变更部分和关键内容进行快速开发即可。军事元宇宙技术的应用,也将使不同用户间的模型更加协调一致,这有望促成不同用户的合作。

The differences in the technical standards used by the various data pools at the beginning of their establishment will make it impossible to connect to each other. The full connectivity and interoperability of the military meta-cosmos require the inherent uniformity of data standards. The various types of data resources must be based on uniform meta-coastal standards or on the development of interfaces that can automatically be converted to met meta-cosm data standards. This task is not easy, but priority is given to interoperability at the beginning of the design, so that many data information resources can be connected to many military virtual environments that may reveal the true value of an integrated military virtual world [28].

数据信息资源建设的统一标准,将在一定程度上缓解数据信息孤岛的现象,而为了数据信息资源的更顺畅交流,则可以借助区块链技术。数据不共享很大程度原因在于数据产出方的付出与收获不对等,数据工作多是幕后工作,共享给他人的同时也常被认为将分析和应用成果送给他人,因此数据产出方多会希望数据信息资源自产自用,降低共享意愿,甚至不愿共享资源底数,导致数据资源重复建设、数据冗余问题严重。在军事元宇宙中对数据信息资源进行资产化管理,引接各类数据信息资源的同时即采用分布式记账方式记录资产归属。由于区块链采取了分布式共识机制、非对称加密,实现了数据流转的去中心化、可溯源 [ 68],数据产出方将倾向于共享记名数据资产以获得奖励与影响力,也可以将数据资产按照NFT管理,通过合理的市场机制调节数据产出与使用的关系 [ 28]。

A uniform standard for data information resources development would, to some extent, alleviate the fragmentation of data information, while for data information resources to be more easily shared, it would be possible to use block-chain technology. Data are not shared to a large extent because of the unequal value paid and harvested by the data producers, which are often behind-the-scenes work, which is also often perceived as sending the results of analysis and application to others, so that data producers would prefer data information resources to be self-utilized and less willing to share the bottom of the resources, leading to duplication of data resources and a serious problem of data redundancy. The management of data information resources in the military meta-cosm would require asset-based management of various data information resources, which would be accompanied by the use of distributed bookkeeping to record the attribution of assets. As a result of distributional consensus mechanisms, non-reciprocal encryption, data flow centralization and traceability [ ], data producers would prefer to share named data assets to gain incentives and influence, and data assets could be regulated in accordance with NFT mechanisms to regulate data output and use [28/span].

数据信息资源的统一标准和快速流通本身将在一定程度上缓解数据质量差的问题。在此基础上,军事元宇宙为数据质量改进提供了2个便捷通道:①数字孪生带来的实时修正。军事元宇宙通过数字孪生连接了现实系统与虚拟系统,数字孪生与仿真模型的差异反映的是建模仿真数据中可能存在的问题。②建模仿真一致性的修正。数据在军事元宇宙中直接体现在建模仿真和可视化上,在虚拟世界的实体行为与交互中出现的错误缺位和反逻辑等均可以反映出数据的问题。军事元宇宙中模型与交互不断完善的过程,也是底层数据质量不断提高的过程。

Uniform standards and rapid flow of data information resources will themselves alleviate the problem of poor data quality to some extent. On this basis, the military meta-cosm provides two easy pathways for data quality improvement: real-time corrections brought about by digital twines. The military meta-cosm connects real and virtual systems through digital twines, and the differences between digital twines and imitation models reflect possible problems in imitating real data.

4军事元宇宙应用探索

4 /span exploration of the applications of the military metaspace >/span >

目前来看,无论中美欧,各国家地区对于军事元宇宙的构建尚处于起步阶段 [ 69],但已经引起了商业公司和科研机构的兴趣,其基本出发点是借助军事元宇宙概念融合扩展现实、人工智能、数字孪生、游戏引擎等多项技术,开发更高效率、更低成本、强化真实感互动感的模拟平台,寻求在真实复杂环境仿真、万人级异地同步表示等方面有所突破 [ 70]。表3列举了宣称已经在进行军事元宇宙探索的几家公司或机构的产品,这些产品多数在构想或研发起步阶段,仅可以被看作军事元宇宙的雏形。

For the time being, whether in Central Europe or Europe, national regions are still in the early stages of building a military meta-cosm [69], but they have attracted the interest of commercial companies and scientific institutions. The basic starting point is the development of more efficient, low-cost, interactive simulation platforms that seek breakthroughs in real complex environments and in tens of thousands of simultaneous expressions. Table 3 lists the products of a number of companies or institutions that claim to be already exploring the military meta-cosm, most of which can be seen only as embryos of the military meta-cosm at the conceptual or developmental stages.

表3 军事元宇宙产品简介Table 3 Introduction to military metaverse outcomes

这些产品设计开发的典型方式是“扩展现实+多点组网+实时同步”。基于高效的信息通信网络可以实现分散用户的快速无延迟同步连接,用户通过客户端设备即可接入元宇宙网络,同时设备的拓展现实设定为用户提供沉浸式参与感,实现现实世界中分离的用户在同一虚拟空间中共同模拟军事训练或作战演练。

These product designs are typically developed in the form of “extension of the reality+multi-point network+real-time synchronization.” Based on an efficient information and communication network, rapid and non-delayed synchronization of decentralized users can be achieved, users can access meta-cosm networks through client-end devices, while the expansion reality of the equipment is set to provide users with a sense of immersive participation that allows separated users in the real world to jointly simulate military training or combat exercises in the same virtual space.

这些产品中完成度较高的是Red 6公司的产品ATARS和CARBON。Red 6是美国先进的AR空战训练服务提供商,能够提供动态户外宽视野、全彩、可演示的AR服务 [ 72](图7)。其产品ATARS全称“机载战术增强现实系统”,为头戴式设备,设备的AR投影具有动态性,将在不同的位置或时间触发不同的内容;真实的飞行员驾驶真实的飞机,与AR合成的对手进行交战,这使得美军无需拥有对手实体飞机即可达到对抗训练的目的。

The most advanced of these products are the products of Red 6 ATARS and CARBON. Red 6 is an advanced AIR training service provider in the United States, capable of providing dynamic outdoor wide-sighted, colourful and demonstrationable AR services [72 (figure 7). Its product ATARS is referred to as the Aerial Tactical Augmentation Real System, a dynamic AR projection for headwear equipment that triggers different content at different locations or times; a real pilot drives a real aircraft and fights an AR-combined opponent, making it possible for the United States Army to achieve a counter-training purpose without having an enemy entity aircraft.

图7Red 6公司ATARS头戴设备和AR合成空战Fig. 7ATARS headset and AR synthetic air-combat of Red 6

, figure 7, , , >Red 6 company ATARS headwear and AR synthetic aerial-combat' , , span>, , >fig. , 7, , ,

ATARS本身仅是一款AR训练设备,需要与Red 6公司的另一款产品CARBON结合来完成多人训练。CARBON全称“联合增强现实战场作战网络”,其功能是将户外或在空的多架实体飞机连接到同一AR环境中,实现多机在虚拟环境中的信息通信、作战态势共有,并能够开展多机协同作战演练,这可以看作是一个军事训练元宇宙的初步形态。这一突破带来了2个好处:①相较于美军红队 [ 73]传统上利用落后版本美军飞机作为假想敌,AR投影敌机可以实现对手从外形到性能的全定制化,按需定制包括对手最先进战机的一系列具体想定,增强飞行员作战真实感和沉浸感;②无需使用实体对抗飞机,将降低训练实施成本,同时降低了飞行员在对抗中因误操作带来的伤亡风险。

ATARS itself is only one AR training facility that needs to be combined with another Red 6 company product, CARBON. CARBON has the full term “jointly augments the real-world battle network”, which is designed to connect out-of-home or empty entity aircraft to the same AR environment, achieve multi-air information communication, operational readiness in a virtual environment, and enable multi-machine coordinated combat exercises, which can be seen as the initial shape of a military training meta-cosm. This breakthrough brings with it two benefits: 1 compared to the American Red Army [73

另一个典型案例是美国陆军的合成训练环境(synthetic training environment, STE) [ 74]。这一项目起源于2016年 [ 75],当时并未采用“元宇宙”的叫法,其构设的目标是刻画多域环境的复杂性,为士兵创立具有沉浸感和挑战性的战场,实现训练能力和作战能力的结合;融合游戏、云计算、AI、VR和AR等多种技术,实现陆军士兵在实战中杀伤能力的快速提升 [ 76]。

Another typical case is the synthetic training environment of the United States Army (synthetic training environment, STE) [74]. The project originated in 2016 [75], when the term “megaspace” was not used, and was designed to carve out the complexity of the multi-area environment, create a battleground with a sense of solitude and challenge, combine training and combat capabilities; integrate a variety of techniques, such as games, cloud computing, AI, VR and AR, to achieve a rapid increase in the capability of army soldiers to kill in combat [76].

这一项目包括三个部分:“同一世界地形”(one world terrain, OWT)提供3D地形数据集;训练仿真软件作为训练引擎;训练仿真管理工具进行有效的训练设置。其中最突出的是OWT,这是一个正在建设的真实、通用、可访问和自动化的3D地形数据集,可用于战场上的模拟训练、任务演练。在OWT中,美军摒弃了“烟囱式”解决方案,将过往57种地形格式数据归并为一种,可以为多种系统使用,建立了一次构建重复使用的模式 [ 74]。值得注意的是,在2021年的汇聚工程演练(PC2021)中,自动驾驶汽车使用了OWT来协助导航和定位试验场的机器人系统,这可以看作是前文中提到的虚拟世界AI借助物理机器人操作真实世界事物的一个案例。

The project has three components: "one world terrain" (one world terrain, OWT) provides 3D topographic data sets; training simulation software as an engine for training; training simulation management tools for effective training settings. The most prominent of these is the OWT, a real, universal, accessible and automated 3D topographic data set being built, which can be used for simulation training, mission exercises on the battlefield. In the OWT, the U.S. Army has abandoned the “synchronous” solution by grouping past 57 topographical data into one, which can be used in multiple systems, establishing a model for constructing reuse [74.

美国陆军将训练仿真的建设重点放在地形上,是出于初级战术演练模拟中对快速精确生成作战环境能力的需求,OWT可以为班排连训练提供逼真的侦察、机动、掩护和射击效果。OWT的未来建设目标是建立高保真数字孪生地球,为受训人员在世界任何地方的训练创建高保真仿真 [ 61],通过扩展现实和数字孪生的结合,实现精准训练向虚拟世界平移。

The U.S. Army focuses its training on the topography because of the need for rapid and accurate production of operational environment capabilities in primary tactical simulations, and ODS can provide solid detection, mobility, cover and firing effects for platoon training. OWT’s future construction goal is to build a high-fibre digital twin earth, create a high-fibre simulation of trainees’ training anywhere in the world [61], and move precision training to the virtual world by expanding the combination of reality and digital birth.

5结束语

5 /span concluding remarks /span >

本文梳理了目前尚不统一的元宇宙定义,从3个不同脉络论述了元宇宙的概念发展;论述了军事元宇宙的建模仿真本质,从拓展建模仿真技术和提升LVC仿真能力两方面论述了构建军事元宇宙的必要性;从训练、作战、数据信息资源管理的实际需要出发,讨论了军事元宇宙带来的改进;整理了宣称正在进行军事元宇宙开发的热门产品并进行了有重点的分析。

This paper sums up the current unharmonized definition of metacosystems and discusses the conceptual development of metacosystems from three different streams; discusses the true nature of mimicry in the military metacosystems; discusses the need to construct a metacosystem in terms of both the expansion of simulation techniques and the enhancement of LVC simulation capabilities; discusses the improvements brought about by the metacosystems in terms of practical needs for training, operations and data information management; and collates and conducts focused analysis of popular products that claim to be under development in the military metacosystems.

总体来看,在过去两年中,元宇宙经历了追捧热炒,也遭遇过质疑冷遇;元宇宙的概念兴起于新的科技革新的催化之中,同时也可能作为核心概念牵引未来社会形态或战争形态的演变。马修·鲍尔认为 [ 19],技术经常会带来意想不到的惊喜,但规模最大、最让人惊叹的发展往往是人们在几十年前就预料到的。对于方兴未艾的元宇宙及其军事应用,应保持开放、积极的态度。虽然元宇宙概念处在起步阶段,存在技术成熟度低、脱实向虚、缺乏治理等问题 [ 77],其未来发展仍不可限量。目前军事元宇宙的建立也处在构想和研发初期,结合本文论述的必要性和需求,可以预见,随着支撑技术发展和潜在应用场景开发,军事元宇宙在未来军事建设和战争准备中可能扮演更重要的角色。

In general, in the last two years, the meta-cosmos has undergone acrimony and has also experienced a cynicism; the concept of the meta-cosmos has emerged as a catalyst for new technological innovations, and may also be central to the evolution of future social or war patterns. Matthew Bauer believes that [19] technology often has unexpected surprises, but the largest and most impressive development is often expected several decades ago. It is foreseeable that the meta-cosmos, and its military applications, may play a more important role in future military construction and war preparation as it supports technological development and potential applications.

1. Meta. Introducing Meta: A Social Technology Company[EB/OL]. (2021-10-28) [2023-05-07]. https://about.fb.com/news/2021/10/facebook-company-is-now-meta/.

2. Ball M. The Metaverse and How It Will Revolutionize Everything[M]. New York, NY, USA: Liveright Publishing, 2022.

3. 王儒西, 向安玲. 2020-2021年元宇宙发展研究报告[EB/OL]. (2021-09-16) [2023-05-01]. https://www.xdyanbao.com/doc/lr8dslc5i1?bd_vid=8246561199639786821.

4. 新媒沈阳团队. 元宇宙发展研究报告2.0版[EB/OL]. (2022-01-21) [2023-05-01]. https://www.paoka.com/info/144.

5. 新媒沈阳团队. 元宇宙发展研究报告3.0版[EB/OL]. (2022-11-14) [2023-05-01]. https://www.xdyanbao.com/doc/xvnxv9aow8?bd_vid=9010972543335130965.

6. 赵星, 乔利利, 叶鹰. 元宇宙研究与应用综述[J]. 信息资源管理学报, 2022, 12(4): 12-23, 45.

Zhao Xing, Qiao Lili, Ye Ying. A Review of Metaverse Research and Applications[J]. Journal of Information Resources Management, 2022, 12(4): 12-23, 45.

7. 刘革平, 高楠, 胡翰林, 等. 教育元宇宙: 特征、机理及应用场景[J]. 开放教育研究, 2022, 28(1): 24-33.

Liu Geping, Gao Nan, Hu Hanlin, et al. Edu-metaverse: Characteristic, Mechanism and Application Scenarios[J]. Open Education Research, 2022, 28(1): 24-33.

8. 华子荀, 黄慕雄. 教育元宇宙的教学场域架构、关键技术与实验研究[J]. 现代远程教育研究, 2021, 33(6): 23-31.

Hua Zixun, Huang Muxiong. The Teaching Field Structure, Key Technologies and Experimental Study of Edu-metaverse[J]. Modern Distance Education Research, 2021, 33(6): 23-31.

9. 杨健, 张安山, 庞博, 等. 元宇宙技术发展综述及其在建筑领域的应用展望[J/OL]. 土木与环境工程学报(中英文), (2022-06-07) [2023-05-01]. http://kns.cnki.net/kcms/detail/50.1218.TU.20220602.1855.002.html.

Yang Jian, Zhang Anshan, Pang Bo, et al. A Review of Metaverse Development and Its Application Prospect in Building Construction[J/OL]. Journal of Civil and Environmental Engineering, (2022-06-07) [2023-05-01]. http://kns.cnki.net/kcms/detail/50.1218.TU.20220602.1855.002.html.

10. 向安玲, 高爽, 彭影彤, 等. 知识重组与场景再构: 面向数字资源管理的元宇宙[J]. 图书情报知识, 2022, 39(1): 30-38.

Xiang Anling, Gao Shuang, Peng Yingtong, et al. Knowledge Reorganization and Scene Reconstruction: A Metaverse for Digital Resources Management[J]. Documentation, Information & Knowledge, 2022, 39(1): 30-38.

11. 杨新涯, 钱国富, 唱婷婷, 等. 元宇宙是图书馆的未来吗?[J]. 图书馆论坛, 2021, 41(12): 35-44.

Yang Xinya, Qian Guofu, Chang Tingting, et al. Is Metaverse the Future of Library?[J]. Library Tribune, 2021, 41(12): 35-44.

12. 戴斌, 熊雄, 孙浩. 揭开"元宇宙"面纱[N]. 解放军报, 2021-11-26(11).

13. 戴斌, 马千里, 童易韡. 前瞻"战场元宇宙"[N]. 解放军报, 2022-01-21(11).

14. 陈东恒, 翟婵, 冯亚茹. 元宇宙: 未来认知战的新高地[N]. 解放军报, 2022-03-03(7).

15. 宋卫东, 马宁, 孟庆良, 等. 元宇宙军事仿真应用探索[J]. 制导与引信, 2022, 43(4): 30-34, 56.

Song Weidong, Ma Ning, Meng Qingliang, et al. Exploration of Metaverse Military Simulation Application[J]. Guidance & Fuze, 2022, 43(4): 30-34, 56.

16. 胡晓峰. 谈谈军事元宇宙(上)[EB/OL]. (2022-08-11) [2023-05-07]. https://mp.weixin.qq.com/s/VttLHdBWwMK5rTO46x46lA.

17. Ball M. The Metaverse: What It Is, Where to Find It, and Who Will Build It[EB/OL]. (2020-01-13) [2023-05-07]. https://www.matthewball.vc/all/themetaverse.

18. Wikipedia. Metaverse[EB/OL]. [2023-05-07]. https://zh.wikipedia.org/wiki/metaverse.

19. 马修·鲍尔. 元宇宙改变一切[M]. 岑格蓝, 赵奥博, 王小桐, 译. 杭州: 浙江教育出版社, 2022.

Ball M. The Metaverse and How It Will Revolutionize Everything[M]. Translated by Cen Gelan, Zhao Aobo, Wang Xiaotong. Hangzhou: Zhejiang Education Publishing House, 2022.

20. Caulfield B. What Is the Metaverse?[EB/OL]. (2021-08-10) [2023-05-07]. https://blogs.nvidia.com/blog/2021/08/10/what-is-the-metaverse/.

21. Melinek J. Microsoft CEO: The Metaverse Will Bring Real World Into Any Digital Space[EB/OL]. (2021-11-30) [2023-05-07]. https://blockworks.co/news/microsoft-ceo-the-metaverse-will-bring-real-world-into-any-digital-space.

22. Kleeman D. Kids Have Kickstarted the Metaverse[EB/OL]. (2021-06-03) [2023-05-07]. https://techonomy.com/kids-have-kickstarted-the-metaverse.

23. Narula H. Virtual Society: The Metaverse and the New Frontiers of Human Experience[M]. New York: Currency, 2022.

24. 澎湃新闻. 首尔冲向元宇宙[EB/OL]. (2022-09-02) [2023-05-07]. https://www.thepaper.cn/newsDetail_forward_19558618.

25. Baughman J. Enter the Battleverse: China's Metaverse War[J]. Military Cyber Affairs, 2022, 5(1): 2.

26. 王文喜, 周芳, 万月亮, 等. 元宇宙技术综述[J]. 工程科学学报, 2022, 44(4): 744-756.

Wang Wenxi, Zhou Fang, Wan Yueliang, et al. A Survey of Metaverse Technology[J]. Chinese Journal of Engineering, 2022, 44(4): 744-756.

27. Fawkes A J, Cheshire N. Military Metaverse CONOPS[EB/OL]. [2023-05-01]. https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-MSG-197/MP-MSG-197-26.pdf.

28. Bhullar S. The US Military Joins the Metaverse[EB/OL]. (2022-09-11) [2023-05-07]. https://metatelegraph.com/the-us-military-joins-the-metaverse.

29. 胡晓峰, 司光亚, 吴琳, 等. 战争模拟原理与系统[M]. 北京: 国防大学出版社, 2009.

Hu Xiaofeng, Si Guangya, Wu Lin, et al. War Gaming & Simulation Principle and System[M]. Beijing: National Defense University Press, 2009.

30. 李宏海. 元宇宙下水面舰艇作战训练研究[J]. 指挥与控制学报, 2022, 8(3): 347-352.

Li Honghai. Combat Training of Surface Warship Under Metaverse[J]. Journal of Command and Control, 2022, 8(3): 347-352.

31. Solly R, McArdle J. Unlocking the Military Potential of the Metaverse[EB/OL]. [2023-05-22]. https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-MSG-197/MP-MSG-197-27.pdf.

32. Knight W. The US Military Is Building Its Own Metaverse[EB/OL]. (2022-05-19) [2023-05-07]. https://www.wired.com/story/military-metaverse/.

33. 谢刚, 邱权, 曾国平, 等. 赛博物理系统元模型研究[C]//2017年(第三届)中国航空科学技术大会论文集. 北京: 中国科学技术出版社, 2017: 174-178.

34. Lee L. How to Leverage Internet of Things (IoT) Opportunities in the Metaverse[EB/OL]. (2022-02-17) [2023-05-17]. https://accelerationeconomy.com/metaverse/how-to-leverage-internet-of-things-iot-opportunities-in-the- metaverse/.

35. 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.

Tao Fei, Liu Weiran, Liu Jianhua, et al. Digital Twin and Its Potential Application Exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18.

36. 卫旭芳, 刘彬. 美军数字工程建设发展研究及启示[J/OL].航空兵器. (2023-01-03) [2023-05-01]. http://kns.cnki.net/kcms/detail/41.1228.TJ.20230103.0952.001.html.

Wei Xufang, Liu Bin. Research on the Development of U. S. Military Digital Engineering and Its Enlightenment[J/OL]. Aero Weaponry. (2023-01-03) [2023-05-01]. http://kns.cnki.net/kcms/detail/41.1228.TJ.20230103.0952.001.html.

37. 苏多, 柳鑫. 数字孪生驱动下的装备适航性和安全性设计与验证技术研究[J]. 航空科学技术, 2021, 32(11): 23-33.

Su Duo, Liu Xin. Research on Design and Verification Technology of Equipment Airworthiness and Safety Driven by Digital Twins[J]. Aeronautical Science & Technology, 2021, 32(11): 23-33.

38. 邓烨, 奉祁林, 赵健. 数字孪生战场建设探讨[J]. 防护工程, 2020, 42(3): 58-64.

Deng Ye, Feng Qilin, Zhao Jian. Discussion on Construction of Digital Twin Battlefield[J]. Protective Engineering, 2020, 42(3): 58-64.

39. 胡晓峰, 司光亚, 吴琳, 等. 战争模拟原理与系统[M]. 北京: 国防大学出版社, 2009: 320-355.

Hu Xiaofeng, Si Guangya, Wu Lin, et al. War Gaming & Simulation Principle and System[M]. Beijing: National Defense University Press, 2009: 320-355.

40. 周媛, 张源原, 朱鹏, 等. 美军构建JLVC联邦互操作问题研究[J]. 兵工自动化, 2022, 41(6): 91-96.

Zhou Yuan, Zhang Yuanyuan, Zhu Peng, et al. Research on Interoperability of JLVC Federation in US Army[J]. Ordnance Industry Automation, 2022, 41(6): 91-96.

41. Clark B, Patt D, Schramm H. Mosaic Warfare: Exploiting Artificial Intelligence and Autonomous Systems to Implement Decision-centric Operations[EB/OL]. (2020-02-11) [2023-05-11]. https://csbaonline.org/research/publications/mosaic-warfare-exploiting-artificial-intelligence-and-autono- mous-systems-to-implement-decision-centric-operations.

42. Clark B, Walton T A. Taking Back the Seas: Transforming the U.S. Surface Fleet for Decision-centric Warfare[EB/OL]. (2019-12-31) [2023-05-01]. https://csbaonline.org/research/publications/taking-back-the- seas-transforming-the-u.s-surface-fleet-for-decision-cent-

ric-warfare.

43. Clark B, Patt D, Walton T A. Implementing Decision-centric Warfare: Elevating Command and Control to Gain an Optionality Advantage[R]. Washington DC: Center for Defense Concepts and Technology, Hudson Institute, 2021.

44. 秦蕊, 李娟娟, 王晓, 等. NFT: 基于区块链的非同质化通证及其应用[J]. 智能科学与技术学报, 2021, 3(2): 234-242.

Qin Rui, Li Juanjuan, Wang Xiao, et al. NFT: Blockchain-based Non-fungible Token and Applications[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 234-242.

45. 胡晓峰, 司光亚, 吴琳, 等. 战争模拟原理与系统[M]. 北京: 国防大学出版社, 2009: 231-233.

Hu Xiaofeng, Si Guangya, Wu Lin, et al. War Gaming & Simulation Principle and System[M]. Beijing: National Defense University Press, 2009: 231-233.

46. Turnitsa C, Blais C, Tolk A. Simulation and Wargaming[M]. Hoboken, NJ: John Wiley & Sons, Inc., 2022.

47. 张昱, 张明智, 胡晓峰. 面向LVC训练的多系统互联技术综述[J]. 系统仿真学报, 2013, 25(11): 2515-2521.

Zhang Yu, Zhang Mingzhi, Hu Xiaofeng. On Multi-system Integration Technology Oriented to LVC Training[J]. Journal of System Simulation, 2013, 25(11): 2515-2521.

48. 毛子泉, 高家隆, 龚建兴, 等. 虚实结合仿真在军事领域的应用综述[J/OL]. 系统仿真学报, (2022-10-19) [2023-05-01]. https://doi.org/10.16182/j.issn1004731x.joss.22-0672.

Mao Ziquan, Gao Jialong, Gong Jianxing, et al. The Application of Virtual-real Simulation in the Military Field[J/OL]. Journal of System Simulation, (2022-10-19) [2023-05-01]. https://doi.org/10.16182/j.issn1004731x.joss.22-0672.

49. 白爽, 洪俊. 美军面向LVC联合训练的技术发展[J]. 指挥控制与仿真, 2020, 42(5): 135-140.

Bai Shuang, Hong Jun. Development of U.S. LVC Joint Training Technology[J]. Command Control & Simulation, 2020, 42(5): 135-140.

50. 杨芸, 胡建军, 李京伟. LVC训练体系建设发展现状及关键技术[J]. 兵工自动化, 2023, 42(1): 4-15.

Yang Yun, Hu Jianjun, Li Jingwei. Development Status and Key Techniques of LVC Training System[J]. Ordnance Industry Automation, 2023, 42(1): 4-15.

51. 胡晓峰. 谈谈军事元宇宙(下)[EB/OL]. (2022-08-12) [2023-05-07]. https://mp.weixin.qq.com/s/PqfKI2ofyEzDdd-MVQG_fg.

52. Vebber P, Aguiar S. Virtual Worlds and the Cycle of Research: Enhancing Information Flow Between Simulationists and Wargamers[M]//Turnitsa C, Blais C, Tolk A. Simulation and Wargaming. Hoboken, NJ: John Wiley & Sons, Inc., 2021: 289-316.

53. Neumann N. The Next Level of Simulation Training: Enter the Defence Metaverse[EB/OL]. (2022-05-03) [2023-05-07]. https://www.airforce-technology.com/analysis/metaverse-simulation-virtual-reality-4gd-hadean/.

54. 荣明, 冯钊, 贺鹏, 等. 军事训练元宇宙的几点思考[C]//第十届中国指挥控制大会论文集. 北京: 兵器工业出版社, 2022: 435-438.

55. Fawkes A. How Relevant is the Metaverse to Military Simulation & Training?[EB/OL]. (2022-11-21) [2023-05-07]. https://www.halldale.com/articles/20491-how-relevant-is-the-metaverse-to-military-simulation-and-training.

56. Kondratjew H, Kahrens M. Leveraging Experiential Learning Training Through Spaced Learning[J]. Journal of Work-Applied Management, 2019, 11(1): 30-52.

57. McArdle J, Dohrman C. The Full Potential of a Military Metaverse[R/OL]. (2020-02-18) [2023-05-07]. https://warontherocks.com/2022/02/the-full-potential-of-a-military-metaverse/.

58. Nair J N. Metaverse for Armed Forces[EB/OL]. (2023-05-04) [2023-05-07]. https://dras.in/metaverse-for-armed-forces/.

59. Linganna G. How Metaverse Will Revolutionize the Battlefield[EB/OL]. (2022-08-22) [2023-05-07]. https://nationalinterest.org/blog/techland-when-great-power-com- petition-meetsdigital-world/how-metaverse-will-revolu-

revolutionize.

60. Rivera L. How the Metaverse and XR Can Improve Military Training[EB/OL]. (2023-02-01) [2023-05-07]. https://modernbattlespace.com/2023/02/01/how-the-metaverse-and-xr-can-improve-military-training/.

61. Easley M. How Interconnected, Simulated Worlds Could Transform Military Training[J]. National Defense, 2022.

62. Park H, Lee Y. Effectiveness Analysis and Utilization of Game System for Military Education and Training[J]. Journal of Internet Computing and Services, 2022, 23(1): 95-103.

63. Amoroso A. Extended Commentary: Ad Astra: The Future of Military Space Operations[J]. International Social Science Review, 2023, 99(1): 1-13.

64. 郑文博, 李强, 刘文礼, 等. 数据知识驱动的城市作战元宇宙建模框架[J]. 指挥与控制学报, 2023, 9(1): 23-32.

Zheng Wenbo, Li Qiang, Liu Wenli, et al. Data-knowledge-driven Metaverse Modeling Framework for Urban Warfare[J]. Journal of Command and Control, 2023, 9(1): 23-32.

65. United States, Department of Defense, Office of Force Transformation. The Implementation of Network-centric Warfare[R]. Washington, DC: Department of Defense, Office of Force Transformation, 2005.

66. Hawkins T, Maness M, Dennison M, et al. Redefining Reality: Creating a Metaverse Model for Mission Planning[J]. Army AL & T Magazine, 2022: 96-101.

67. 贾晨星, 李立纲, 任重. 强军新时代军队作战数据建设[J]. 国防科技, 2018, 39(6): 48-52.

Jia Chenxing, Li Ligang, Ren Zhong. Thoughts on the Construction of Our Military Operations Data in the New Period of Building a Strong Army[J]. Defense Technology Review, 2018, 39(6): 48-52.

68. 侯胜杰, 徐明克, 雷景皓, 等. 元宇宙中军事装备数字资产管理架构[J]. 指挥与控制学报, 2022, 8(3): 286-293.

Hou Shengjie, Xu Mingke, Lei Jinghao, et al. Digital Asset Management Architecture of Military Equipment in Metaverse[J]. Journal of Command and Control, 2022, 8(3): 286-293.

69. METZ D, Maria-Mihaela Gur?u. Emerging and Disruptive Technologies: The Metaverse. Implications on Global Security[J]. Land Forces Academy Review, 2022, 27(4): 411-422.

70. Datta A. What is Military Metaverse and How Is It Different From Commercial Metaverse[EB/OL]. (2022-07-29) [2023-05-07]. https://www.geospatialworld.net/prime/what-is-military-metaverse-and-how-is-it-different-from-commercial-metaverse/.

71. Ma?gorzata Gawlik-Kobylińska, Maciejewski P. Experiential Learning With Sansar Platform a Concept of Military Training[C]//International Conference e-Learning 2019. IADIS, 2019: 325-328.

72. Kolo K. Why the Military Needs a Metaverse-ATARS, the Gateway Into the Military Metaverse[EB/OL]. (2022-01-12) [2023-05-07]. https://www.thevrara.com/blog2/2022/1/12/why-the-military-needs-a-metaverse-atars-the-gateway-into-the-military-metaverse.

73. 王保魁, 吴琳, 贺筱媛, 等. 美军红队评估体系建设现状及启示[J]. 国防科技, 2020, 41(2): 91-95.

Wang Baokui, Wu Lin, He Xiaoyuan, et al. The Status Quo and Revelation of the US Red Teaming System Construction[J]. National Defense Technology, 2020, 41(2): 91-95.

74. Anon. Synthetic Training Environment[J]. Army, 2022, 72(10): 168-173.

75. Harper J. Army to Build Synthetic Training Environments[J]. National Defense, 2016, 101(757): 28-30.

76. Harper J. Army Accelerating Synthetic Training Environment Programs[J]. National Defense, 2018, 103(781): 34-36.

77. 赵星, 陆绮雯. 元宇宙之治:未来数智世界的敏捷治理前瞻[J]. 中国图书馆学报, 2022, 48(1): 52-61.

Zhao Xing, Lu Qiwen. Governance of the Metaverse: A Vision for Agile Governance in the Future Data Intelligence World[J]. Journal of Library Science in China, 2022, 48(1): 52-61.

Metaverse Concept and Its Military Application

Zhao Tan 1,2 Wu Lin 3 Tao JiuYang 3Li Shuai 1

(1. Graduate School, National Defense University, Beijing 100091, China; 2. PLA 31015 Troops, Beijing 100094, China; 3. Joint Operations College, National Defense University, Beijing 100091, China )

Abstract: Metaverse is a concept describing the fusion and interaction between virtual and real, which has become popular in business and academia since 2021. The aim is to study possible applications of metaverse in military. We sort out the definition, characteristics and development of this concept. Then we analyze the necessity of using the concept of military metaverse from the expansion of modeling and simulation(M&S) and live-virtual-constructive(LVC) simulation. And then we study the possible improvements of the military metaverse from the actual needs of military training, operation and information resource management. We sort out the prototype products of the military metaverse under development and analyze their typical development methods.

Keywords: metaverse;military metaverse;extended reality;modeling & simulation;synthetic environment;military applications

引用本文:赵坦, 吴琳, 陶九阳, 等. 元宇宙概念及其军事运用[J]. 系统仿真学报, 2023, 35(7): 1405-1420. (Zhao Tan, Wu Lin, Tao JiuYang, et al. Metaverse Concept and Its Military Application[J]. Journal of System Simulation, 2023, 35(7): 1405-1420.)

第一作者:赵坦(1992-),男,博士生,研究方向为复杂系统与网络,战争复杂系统建模。E-mail:imzhaotan@163.com

First author: Jotan (1992- ), male doctoral student, in the direction of complex systems and networks, modelling of complex war systems. E-mail: inzhaotan@163.com

通讯作者:吴琳(1974-),男,教授,博导,博士,研究方向为战争模拟,运筹分析与军事智能决策。E-mail:nduwulin01@163.com

Correspondent: Ulin (1974-), male, professor, mentor, doctor, directed to war simulations, preparation for analysis and military intelligence decision-making. E-mail: nduwulin01@163.com

关注公众号了解更多

Focus on the public to learn more about

会员申请 请在公众号内回复“个人会员”或“单位会员

Please respond to “individual members” or “unit members

欢迎关注中国指挥与控制学会媒体矩阵

Welcome attention to the Chinese Command and Control Society Media Matrix

CICC官方网站

CICC official website

CICC官方微信公众号

The CICC official micro-public number.

《指挥与控制学报》官网

Network of Command and Control Journal Officers

国际无人系统大会官网

International Network of Unmanned General Assembly Officials

中国指挥控制大会官网

China Command and Control General Assembly Network

全国兵棋推演大赛

The national chess game.

全国空中智能博弈大赛

The National Aerial Smart Gambling Competition.

搜狐号

Search Fox.

一点号 返回搜狐,查看更多

returned to search for more

责任编辑:

文字格式和图片示例

注册有任何问题请添加 微信:MVIP619 拉你进入群

弹窗与图片大小一致 文章转载注明 网址:https://netpsp.com/?id=68728

美化布局示例

欧易(OKX)最新版本

【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   全球官网 大陆官网

币安(Binance)最新版本

币安交易所app【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   官网地址

火币HTX最新版本

火币老牌交易所【遇到注册下载问题请加文章最下面的客服微信】永久享受返佣20%手续费!

APP下载   官网地址
可以去百度分享获取分享代码输入这里。
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

发表评论
平台列表
美化布局示例

欧易(OKX)

  全球官网 大陆官网

币安(Binance)

  官网

火币(HTX)

  官网

Gate.io

  官网

Bitget

  官网

deepcoin

  官网
关注我们

若遇到问题,加微信客服---清歌

搜索
排行榜
扫一扫,加我为微信好友加我为微信好友